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ORAVltATlOKAL ItAbtATlON IN FLAT SPACfcTlMb RhlATlvm 

James Clark Keith" 

Research Institute, University of Detroit 

ABSTftACT 

The possibility of a 1/c order gravitational radiation Is consld- 

efed within ihe freunework of the flat spacetlme relatlvlstlc gravitational 

theory of Gi Di Dlrkhoff« The method stresses tue complementarity between 

results det*lved by considering direct interparticle actions and the inten- 

sity of the fat* gravitational radiation field.  It is proved that centrif- 

ugal as well as gravitational forces may dampen the accelerated motion of 

a system of masses. The results predict that a "freely" rotating mass 

system will dissipate energy at a rate directly proportional to its total 

energy and to the factor -k(au/c) w 1/sec, w being the angular velocity, 

'a' the radius of rotation, c the velocity of light in vacuo, and k a dl- 

mensionless ratio of the system's moments. 

lor a small rotor magnetically suspended and spun in ultrahigh vac- 

Utmij the gravitational power loss can be detected directly by measuring 

the angular deceleratiohi An experimental decision should help shed light 

On the validity of the more generally accepted 1/c order radiation pre- 

dicted by other means. 

*  Ilesearch supported In part by trie Li. S. Army Transportation Research 
s 

Commflnd, tort hustls, Virginia, under Contract No. DA-44^177-TC-5ig< 
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1.

Lslii^ the t\7)lcal flat sj^acetlne relctlvlstlr gravltctloiial theory of G. D. 

Blrkhoff,^ We shall apply the theory to prediction of possible gravitational effects 

of an Drier higher than l/e*« Several effects of Interest appear in connection with 

the associated gravitational field and radiation from accelerating masses.

One result of special Interest Is tlie prediction of a new, alternate type of 

'pure' gravitational radiation which lies directly between tlie 1/c order gravita­

tional aberration effect suggested by Laplace^ and the 1/c® order gravitational 

quadrupOle radiations predicted by Einstein and others.® The new predictions appear 

susceptible to experimental verification. This is interesting in that ua gravi­

tational phenomena of an order tilgher tiian 1/c^ have ever been observed. In the 

last section an cxperlmentum crucls Is proposed to test the validity of the resulting 

predictions.

Notations needed.

I:
/■

(1,-1,-1,-1) for 1 = j 

O for 1 / j

(1,1,1,1) for i = J 

O for 1 / J

1».1 ,k,Pi,7i= 1,2,3,4 (spacetime components). a = 3,3,4 (space components only)

= l3 * D = c*/3x^9x^ where the standard situation convention nolds on

upper-lower repeated indices. V is the 3-vector del operator,

jf the gravitational constant! y “ 1/(1-[v/e]^)‘ the Lorentz factor,

h^^ gravitational potential tensor. gravitational field tensor.
g

t^j(r,ct) stress-energy-roonientum tensors of mass and gravitational field.

4-veloclty compo:ient. v 3-vector velocity. 

a 3-vector acceleration, a® = a-a

f 4-force component. 
J

F 3-vector force.

a- angular velocity (radlens/sec) . c = 3 x i0^° cir./sec speed of light in vacUo. 

toils.

I'nratiohallzed e.g.s. wlieii needed.

/
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« t. BÄBtS AND SOME INTERESTING CONCLUSIONS 01  THE BIRKHOfF THEORY 

1«A Pögtulfttfes öf the relativlstlc gravitational theory of Ot U. Blrkhoff« 

The formal bnals of the Olrkhoff gravitational theory Is embodied in the fol- 

lowing postulates expounded by Birkhoff, Graefj and Barajas. 

tt.l The frame of reference of gravitational phenomena is the flat C+>-j->-) 
spatetiwe of Lorentz-Minkowski* 

b;3    The fot*mal principle of equivalence is assumed« 

HsU The gravitational field Is completely characterized in spacetime by a doubly 
bovarlant symmetrical potential tensor h..,. The gravitational field components 

I 
B i^ at'e linear combinations of the first partial derivatives of hjit 

t 

Bi4 The hii of a mass point at rest with respect to an inertial system is equal 
irt fepacetime to the product of the Newtonian potential :i0 = yM/r times the 
doubly dbvarlant Kfoneeker delta. 

Öi8 Ofavltatlohal perturbations propagate with the velocity of light in vacuo 
ih an inertial reference system. 

Biß The hji of a mass point In arbitrary motion Is equal to the set of all the 

IhstanttineDüs gravitational fields generated by this mass point in all Its posi- 
tions in physical space« 

öi? The potential tensor of a gravitational field ca»fefe»t by many mass points Is 
equal to the stlm of the gravitational potential tensors of each mass point« 

1 should like to draw special attention to Birkhoff*S crucial concept of the 

llltiiting velocity of "disturbance" in the perfect fluid of his theory.9 In light 

of the akiomatlc nature of this concept, B.5 might perhaps be worded more suggest- 

ivelyi 

tii8 Inertial and gravitational disturbances, forces, and field potentials prop- 
agate at fundamental velocity c of magnitude equal to the speed of light in vacüöj 
independent of the mass or energy density or velocity of the frame of reference« 

Some very pointed arguments of Moshlnskl concerning the complementary pure 

gravitational field Interactions can be summarized by adding two postulqjtes to the 

above system« These give a concise description of the field aspects ofBlrkhoff 

Theory. 



3. 

H.8   feaeli poniponent of the potential tensor hji  In rectangular orthogonal coor- 
3 

1J 

2,o 
dlnates satisfies the inliomogeneous wave equation:        G  hi^  s '»nyp 

fl.9    'liip Held interaction energy density Is given by the Lagranglan function,' 

'L = -l/RTlY g^  dh^/Qx1    diW/<3xJ + ih^p'^* 

utiere p^      1» the equlvftlent mass density of 4he external field. mn 

Bdl - B.7 embody th«* direct  interparticle gravitational action description in 

much the same way the "new" clecti«odynaniic« nf Moon jind Spencer    gleaned from the 

lOtll Cefitttfy pussies describes the direct Interparticle action in electromagnetic 

theory.    Postulates BtS and B.9 manifest the field aspects of the gravitational theot'y 

proposed by Birkhuff«    Both field and particle descriptions riil be of interest« 

The above postulates are consistent with ttirklioff's Initial fermulation   (1942) 

Altd must be assume«! to generate a completely self-cwntalned flat spacetlme relatlv- 

istic theory of g^vitational  interaction.    The ttieory as it stands is a strotig se- 

quel  to the first attempts by Nordstrom  (!912>  and MUeiiead  (1923)   to develop a rel- 

ativistic gravitational theory within the uniform flat spacetlme of Lorentz-Minkowski, 

lmti    Applications of the  ttieory. 

TIW gravitational  theory of Blrkhoff may ho summed up by the equations: 

c2d2xt/ds2 - fS/m =   Oh   /ÖKk - Öh k/'äx1)uJuk 

(i) 

g J 92to /9x 9** = 4nYP   0* in free space, 0* 0     mrr ^ run 

(l,),m»t» run from 1 to 4) 

The "true* mass m Is nssumed «'«ns.tftttt along thp world tube "^"; c d x./ds = f?/m 

Is the 4-aceeleratlon component ef a particle acted on by the gravitational force, 

and measures the curvature of the world tube which that (extended) particle pervades, 

u' are components of the world velocity of m and constitute the unit tangent vector 

to the world tube, v, J is the metric tensor for a flat spacetlme. hji are sym- 

metric components of the gravitational tensor potential. 

Ih a free stationary space sufrounding and proper to a point mass M, the Poisson 

equation of (1) becomes time-independent and yields a proper static solution for h..J 
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4. 

J(point mass)    J 

where 6.. is the Krötiedkei« delta, h  1 when 1»J and 0 when l/j. This Is also Birk- 

hoffS solution fOi' the static, spherically symmetric central mass Where Integration 

extend» over the volume of i,trueH mass of the Blrkhoff perfect fluid of density 

®i\ *  ^H* ^n^ point-mass and spherically symmetric solutions of h.. will be 

considered in this article unless further integration Is indicated. 

Oraef has shown^" that when the mass M moves with arbitrary velocity, the rel- 

itivistic potential encountered in an Inertlal frame of a remote observer is ob- 

tained by orälnary transformation laws for a second order tensor in flat spacetlme: 

hij * (2uiuJ " gij)hö (8) 

Mere ü., u. are covarlant components of relative velocity between M of h0 and the 

rest frame of an inertlal observer, h0 being the Newtonian potential -xWr.    Graef 

also shows how inore refined considerations will require all quantities to be taken 

at their retarded times with r in the denominator of h0 replaced by [r - (f ' yj/ej 

In usual manner.^0 

Substitution of the static h  of (2) into the force equations (1) gives the 

equations of motion for a small point mass m moving in the field of M with relative 

velocity components \r ,  ü « Blrkhoff Integrated the force equations and derived 

the correct crucial test predictions from his new theory In 1042. The theory so 

far has predicted accurately all observed gravitational phenomena.  The correct 

factor of S in the gravitational bending of light appears as a direct and non- 

arbitrary consequence of the Theory as opposed to such Implications as drawn by 

W. Thlrrlng J In addition Graef has predicted the apsidal advance in the general 

problem Of two bodies avithout excessive effort, and Romero Juarez has done like- 

wise With a restricted three-body problem of great interest.12 

*. 
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* *» 
In J945, Alba reaJlz^d that wert- a central mass M to rotate about Its axis, its 

gravitational field would be modified somewiiat as suggested by the relativlstlc de- 

pendem-e of the potential tensor In (G).1S It was not until 1952 that Alba applied 

his result to the calculation of non-planar forces on the orbit of a satellite, 

thus generali*lng lUrkhoff's equations for the relativlstlc motion of a point mass 

In a static field. 

AH>a*s arguments seem satisfactory from a phenomenologlcal point of view and 

consistent within the framework of the lilrkhoff Theory. The axial rotation of an 

extended mass M perturbs Its static field because of relation (P.)  derived by tiraef. 

Hie statle I'lelrt of M In Its proper frame must first be transformed Into a frame ro- 

tating with minus the angular frequency of M.  Thereby a new field of M is set up 

In all inertial spaces, in particular (to a good approximation) in that space in 

which a satellite orbits about M. Once this new field of M has been found by (3), 

the remaining relativlstlc corrections depend only on the velocity of the orbiting 

mass m with respect to the center of mass of M. 

Spin acceleration thus appears to perturb the static central field In a singular 

and Irremovable manner, yince Graef has shown that h.. appears dlagonallzed only 

In Its proper rest frame, it can be Inferred that, absolute motion or acceleration 

of a Source M will In general always affect its external field in the non-accelerated 

"free11 space pos^d hj the universe, as will be shown more rigorously in a later 

section. 

The external gravitational fields of accelerating masses are therefore distin- 

guishable in the Birkhoff Theory in an absolute sense. The new external field 

potential of ah accelerating mass has the character of a non-diagonallzed tensor 

of second order* The complexity of the total external field is thus enhanced in a 

definitive way. 

A natural extension of Alba's argument treats the effect of acceleration of 

the orbital mass in. Let v he components of 4-velocitj of M relative to the center 

of mass of an m-M system, and u be the components of velocity of m also relative 

to the system's center uf mass.  Let us compare the results of substituting tne 

potentials KIVPU '>> (•") '<'»' ni i"to t,'e force equations H). The acceleration 
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experlenrsfd by U as a result of the force exerted on It by the field of m follows 

la«edlately:

cVXj/ds* « - v^)v'‘ dho/ax** - (2UjV'*u^v'‘ - 1) Oh^x^ .

♦ - 0UjU^/c)x*) (4)

tlK» last tem drops «Mt wily if the non-diagonal coaponents of the tensor potential 

vanish! the acewl erst Ion expsrleneed by n as a result vf the force exerted on It 

by M obtains by permutlrtg the roles of the v^, ti*^, and In (4) .

la Illustrate tlie physical slbltl flee nee of these equations, consider the 

Ideal situation almre n rotates lo a circle about M so that h^j and y ■ l/[l - (v/c)*] 

are time-Independent ccustants of the inotion and the ratio ■/Il«l. Under tliese 

cundltions tlie fl-vertor aecelerstlan of M Is found from equation (4) to be:

C-li

r^/M = - 11^0 - 2y*(2y* -IMi^ayc®

I- •
where h^ • •*1»/P ami Is m*s acceleration In the positive r direction. Tlie Jast 

term of (ft) shows the gravitational force acts also on the equivalent mass of the 

m-M Held energy* Ihe factor V. suggests the gravitational mass Is twice the equiv­

alent field energy siass* which appears to be localized about m. When m accelerates, 

tlie equivalent mass of Its field Interaction energy also accelerates. The first 

term OO tpe right of^(6) Is the malo relativistic correction term of the Uiryhoff 

Uieory. If the ratio of m/U Is not vanishingly small, additional residual terms 

will appear In the description of the niotlon because of the velocity of U relative 

to the center of mass.

l.C* (hicstlon of tht‘or«»tlcal antt experimental conqiartsons 
between the grr.v 1 tatlonal theories of fclnsteln and Hlrkhoff.

It would be Interesting to fl.id reasoiable ln-ran,ic experimental tests for de­

ciding definitely In favor of the curved or flat spacetime versions of gravitational 

theories. One wotwiers from the standpoint of the models Involved how many residual 

levels of fine effects the Klnstcln and blrkhoff theories In fact describe.
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7. 

Verification of 1/c order "crucial tests" sucii as advance of Mercury's perl- 

nellon, bending of light around the sun, and shift of the emission line of Mössbauer 

Y-rays In the Karth's gravitational and rotary centrifugal fields, brilliantly con- 

firm the Ulrkhoff theoretical predictions as well as those of Einstein* At the same 

time, the Mftssbauer experiments check the locally Indistinguishable nature of the ef- 

fet'ts of gravitational and centrifugal fields on electromagnetic waves as comnionly 

assumed In. both theories! Such close theoretical correspondence makes one skeptical 

that decisive tests to decide In favor of either theory will by found In the area 

of 1/c effects» Ihe theories down to this level appear equally valid representations 

of naturei 

This' situation suggests the desirability of examining residual gravitational    l 

effects of order higher than 1/c » Do accelerating systems radiate away energy 

through their gravitational field and run down? • 

There are yet no experiments which determine the exlsteiice, magnitude, or velo- 
« 

city of propagation of "pure" gravitational radiation for even Induction) fields. 

The "crucial testa" above In-ilcete very Indirectly that the cliaracterlstlc velocity 

of gravity may *ell equal the velocity of light in vacno»  According to Laplace, if 

gravity propagates at some fundamental velocitj', aberration of the centrat forces ex- 

perienced by a satellite shoiild cause 1/c order tangential forces to affi»ct contimH 

OUSly the satellite's secular erfuation.2 Paradoxically, if c is the speed of Ügkl 

In Vacuo, such a first orrter effect would have been observed astronomically long ag»i 

On the Dther hand» the l/c order Einstein gravitational ratflatlon reaction 

(whicii, Eddlngton cansiders a residual^ fifth order Laplace effect) remains beyond 

the fatlge of practical measurement*15 

The dlrecf ion 4akei| fcy the previous cons lite rat ions o^-Birkhoff, Graef, Moshlnskl^ 

and Alba have led me to apply the Birkhoff Theory for the first time to effects of an '"! 

order higher than 1/c . In the absence of experimental results, such residual grav- 

itational effects a; e only possible descriptions of the physical systems involved. 

This effort is motivated in part by the fact that the ensuing predictions appear barely 

to be within the range of experimental observation«  If this were indeed the case, the , 

results offer a definitive experimental test for the respective models deriving from 

Einstein and Birkhoff tbeorles for the cases of gravitational radiation from acceler- 

ating mass systemsi 
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II.    llAiilATION ntALTIOX ON MSS AttLlJüiAXING IN GIlAVITAI'IONAL MELDS 

II.A    llmo romiionetit of gravitational 4-force on a mass m. 

lo study In a simple way the gravitational radiation process, it would be well 

"   to formulate a measure of tue total time rate of change of energy in a mass system. 
® ■ o . 

Hith only gravitational forces acting,   the time component of inertial force according 

to the fllrkhoff Iheory must equal the time component of gravitational force,  i.e. 

cf   = Yd/dtfymc3) = cf* (6) 

By Imposing Klrkhoff« condition of orthogonality of the world velocity and wofld 

force,  the i;orrt»«jjojifiii% ri»iet.lon u'f.   = 0 gives that 

Vf* = -luJf« * u8rs ♦ u4fj) (7) 

Where v  is itie ntm-relativisHp O-vector velocity and F    is tlie relatlvistic öirkliol'f 
g 

ft*vector force give« by «tttanllig the spatial   (2,r'f4)  romponents of the gravitational 

4-förce defined by  It}.    Combining   (fii   and  <7a)  gives the net  time rate of change 

Stf ener|^ of Uie mass w In an external gravitational  fields 

Vtf/dtlymc ^ = v -F   = dE/dt m 

Tip avefage »f tols oi*«Bt.llj over a long t#«e w# |«tegtal namber of revolutions f 

is defined by the time-averaging operation: ® 

  T -•    -• 
dE/dt      1/1  [    v »F^d* * (9) 

With a long term or integral cycle gravitational radiation loss, the time component 

of gravitational force would not average to zero and would affect m's inertial 

energy. Since the gravitational induction field Is usually considererl the conscr- 

vatlvp part of the total field, its fluctuatlotis avcra<;p to zero In this proceFS* 
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since the Blrkhoff Theory is Intended to describe completely all gravitational In- 

teractlonS) and t»ie conservative Induction field components vanish,* we assune what 

la left from equation (B) contains Information about the gravitational radiation or 

radlatloti-reactlon undergone by an accelerating system of massest The time-averag­

ing operation on dK/dt in.(S) Is Implicitly carried out In our following results.

ll.B Subsidiary field cotidltlons.

SosM refinement Is necessary ta accotmt for the finite velocity of propagation 

^of fields. Such subsidiary conditions derive naturally from the postulates of the 

first section. Oraef derives retardation conditions for the gravitational potential • 

tensor using postulates Except that t»»ey apply to a second order tensor,

these eondltlohs are t|ie same as those of Ute ototidard Ltenard-Wleehert retarded 

potentials of electromagnetic theory so fiuntliar in tlie literature* Consistent 

results can be obtained tasuslly by expansion of the fields and veloeltles measured at 

ttie oflgla of tlie observer In o Taylor berles about the point tg - r^/e* where r| Is 

the distanee t« each sotvce-nass eleawnt dm|. Physically* this allows the field at 

the center of mass of a system at tine tg to be expressed by ouperposlng oentrltihtlons 

from each d«j at time r^/c earlier.

It can be shown that the net effect of ttie retardation conditions on the source 

moving with uniform velocity is to make the total force appear to come from the present 

rather than the retarded position of the sowce.^^ When additionally the source ac- 

rrlerates, residual tangential cosiponents can arise In the force field and cause a 

degradation of the energy of an interacting sysl«m of emeses* he exanli^ this sl»- 

•Mtistt In detail In the next sections.

II.C Helj retardation.

In J’art 1 we have seqn how acceleration mT a mass according to the Blrkhoff Theory 

mudlfles Its static gravitational field. When a force acts on a mass causing It to

Tidal frictions and the like are not considered In tlie present study.
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accelerate, it also acts to accelerate the negative equivalent mass of the gravita- 

tional field energy. The result is summed up by equation (6), which holds down to 

the 1/c order of residual gravitational effects. 

Graef has shown,as pointed out in the last section,that h^ must actually be 

treated as a retarded tensor potential. As mentioned, the net effect on the New- 

tonian potential h0 is to make the gradient t)f fi0 at the origin appear to come from 

the present position of the sourtfw to a very good approximation. The modified tensor 

potential however also Involves derivatives of the retarded velocity components of Wf. 

When expanded out in a Taylor series about fcbe point t0 - r/c, r being the distance 

to the center of mass of the sypte», 

(*We = *o -f»/OiVdt ♦(^c,jd*V*U2 *..-*«        HOI 

-« 
where vg is the present vector vfflocity«   We i»e«tflct nurswlvc» to physical systems 

wnere v posaess»» ewitlnwKis, well behave«! ili»rlv»tives|«ni %<c«   W» shall consider 

only term» (town tn the flrftt order in i/e*   Ttte lft»t tarm of equation {&} tiow becomes! 

y« • -8Y*<SYa -lMi0«4/r* ♦ SY'WY* - f^^r/cVv0/Wt8 (11| *       , 

The rate 'of ei^rgy cllaslpatlon trm the J%»t ter» in ttmnt 

i 'f%- ♦ay2^2 - l)(mV/«3)%0.d
fi%0/dtJ UM 

The minua1 sign itjdjc«tes the system dissipate« power when *»nhi0 = -YMm/ti*   M &m Jse ( 

any mass at fttatance & {at test fejatlx* to ikie origin^  vitich interacts *lth nt> 

II.1J   Radlailoir reaction jn varlofis physi^ai systems of interest. 

The result lends Itself to an interestiwg jph^sical ifiterpretatlon:    The gravl*a- 

Ifonal  force between m and M would be almost c;entral except  that the equivalent mass 

of their mutual  field energy wlilch Is  localized about in.lags m In space because of 

the above retardation condition on the velocity components.    The direct gravitational 

force between that   (negative)   equivalent mass of the field energy and M then tries  to 

pull m "backwards" and opposes  the motion. 
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In the Ideal case of a mass m rotating iji a circle with h0 » a constant and with 

v8 an Ihvaflant of the motion, the velocity Is perpendicular to the acceleration and: 

® 

v • F " -2Y (2Y
2
 - 1) (Y^n/f) (ru/c) 3u)* (18) . 

Tljls Is proportional to the square of the absolute accelefatlon and apparently has 

no angular dependenceJ Blnce the time average of the square of the acceleration Is 

tfee squafe Of the acceleration, the result for a ring of mass orbiting around a cen- 

tral mass M becomes 

(\'ij   ,  = -2Y2t2Y2 - llHYMn» , /r)(^uj/c)3w (14) 
8 ring -» riv% 

thereas if the ring of mass holds Itself together gravitationally and spins at the 

sftme time amilitd it« «enter of mass, 

v-f. = -Sy2(aY2 - l)^2 (r:/)2/c3 (15) 
8 • 

lö^ an equals Lelai»e*«g mass pole rotating in opposition to m, both v' and v are 

revefseil and the power losses »f the «xmbined masses are additive. 

Equation 113^ gives the energy dissipated in a unit ttme from an M-m planetarp 

system» tvtdently, the energy*ls lost continuously and at a constant rate. The 

ratio of the power dissipated to the total negative energy «f the M-m sf%t«« |s pos4- 

tiv*> so tTiftt the tinetie energy  continues to increase and the planet spirals in 

towaKtfti Mi hor  the Earth-Sun system, letting T be the present period of 1 year. 

dT/dt - -2(rw/c)3(uT (16) 

Since all the Values are known, inunedlate substitution and integration of the effect 

over 10 years results in the prediction that the year will be 10 hours shorter than 

now dUe to the gravitational reaction derived above. The present long term stability 

of atomic clocks falls Just slightly short of the-accuracy required for the measure- 

ment of vieh an effect. Both m and M should radiate a power due to their own abso- 
o 

lute accelerations!  If r and a are the distances of m and M from the center of mass 
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m    9 M 
of tlie m-M system, mr = Ma: F • v Is found to equal v   • vuj and the sum equals: -   -  g  m ^    g  M 

-4Ya(2Y2 - l)Ym!(™VA3 , ^7) 

The power dissipated by the mutual Interaction of m and M Is therefore M/m times 

the power either mass dissipates Individually* As the ratio of M/m approaches 1 

as in the case of the rotating dumbbell, the power dissipated in the mutual Inter- 

action approaches that dissipated by -the masses Individual^ 

To calculate the self Interaction of an accelerating mass, let the center of 

mass of m be al Q<r,t) while P^1, t0 - 0' - r^c) Is a non-accelerated point of an 

inertia! spaee MnstAtttaneously" occupied by m. The field at P originating at Q 

Is retarded l»ji • tt»e ö"* - i^«» Caaslftertng the Interaction of dm* with the static 

field of m,  we find the approxlmste Jower dissipated In the self-Interaction by 

integrating dm' me* tj» entire mass dlst*»lbutl«n. This gives a net resistance 

to a*A  flinear) Mtefomlon ofl 

$    -  -Y2f2Y2 - l^nf2(<!2V0/dt
2>l/c3 (18) 

Tlie power iHsslpated b^ the m*m dumbbell will be compatible with this, result If 

we assume coherence will make the final result N2 = 4 times the power from one of 

Itie masses k. 

^ See equation (13). 
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III. THE FAR FIELD 

III.A How does acceleration effect the energy density of the far gravitational field? 
-■■-■ I    I I .  . ,11  _L._ J__I.J II I   I         I    .  I  II I   II     ■          I   I      '       ■    ' ' ^  

In accordance with the findings of Part I, only components of gravitational field 

In the direction of absolute acceleration of source mass m will be relevant to first 

order calculation of the far field gravitational radiation intensity. This appears 

reasonable on grounds (£hat field energy density has equivalent mass which reacts in 

line with the source's apparent acceleration as shown in equation (5). 

The Lagranglan function Moshinski chooses (Postulate B.9) for the energy densitj 
o 

of a fllrkhoff gravitational field reduces in free space in absence of other fields to: 

I =  (-1/8) nYg1J Ohmh/axi) (9hmn/9x
J) (19) 

In this section we concern ourselves with the way the first order radial component 

hj of h.. changes along r and contributes to outward flow of gravitational radiation 

from the accelerating mass system. Thus we write 

I *  (-l/8)nYglj(ah!r/9x1)(öhir/d*
J) = (-l/4)TrY(Vhlr)

2       (20) 

lr 2 where h.     = -h      * -2Y h0v /c» and we use  Ulis to get the self-lnteractlo» of the 

far field, 

The enetgy density In the far field f)y symmetry must propagate outward Jn the ra- 

dial direction with finite velocity c (Postulate B.S).  In time dt, an amount of energy 

dE " L dV = Lc dt dA then flows out through the differential area dA. The total time 

rate of energy change within the volume enclosing the accelerating mass system is: 

dE/dt = ji Lc • dA (21) 

2 
Since dA = r dC where fi is the solid angle subtended by dA at distance from the origin 

r, only terms In the field energy density (20) wh^cn go as 1/r will have no singu- 

larities at Infinity and will Indicate the net gravitational radiation flow dependent 

only on source parameters. We therefore exclude terms of higher order than l/rS. 
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This exclusion will bn Indicated by tne new symbol ■ which signifies that only l/r 

dependent terms of the field and l/r dependent terms of the field energy density L 

are to bp considered. 

lll.H Linearly and circularly accelerating mass. (Diagrams 1-2) 
© 

Let m, moving from rest at 0(0,0,0,0) with acceleration a along the x-axls, be 

at H  point Q(t.,x,0,0) while IMf »x'»y* ,2*) is a non-accelerated point of "absolute1' 

sjiare at which the field energy density is to be found. From classical mechanics, 

^mv = max holds between the velocity, acceleration, and x coordinate of m at any 

time t. Thus W = ff/v. Since the y and z components of velocity are zero, (3) gives: 

h  = -2Y*h0,v /c)cos(r,v) (22) 
Ir x 

where cos(r,v) is the angle between OP and QP. The gradient of h  is 
Ir 

Vhlr =(-2Y
2n0/c)cos(r,v) a/v (23) 

and eqtiatlen (SO) immediately gives L. Using this in conjunction with equation (21) , 

we get, finally* 

dt/dt g -|A(dfi/4n) (4Y
4Ym2/c) (a/v) "cos2 (r,v) = M/Sy^YniVc) (a/v)2   (24) 

where if 0 is the angle between the projection of r on the x-y plane and the x-axls. 

and 6  the ahgle between the r and the ?-axls, dflcos (r,v) = sin 6  cos 0 dö d4>. 

Hecause overall momentum must be conserved for physical systems, the picture of 

an accelerating monopoie of mass is too ideal.  In reality, in31 = M32 where M moves 

In the opposite direction to counterbalance the motion of m. We now take m equal 

to M and find how this modifies the total far field potential. 

The velocities of the two mass points m and m are now equal and opposite, and 

by Postulate H.7 HIP total potPntial at a far field point P is: 

II.  - -2Yr(hc/V) (VY
(I)
 - v<J

2))cos(r,v) (25) 



■ .«:?e;a-,^^-'r fy 

15. 

So far retardation conditions on the field interactions have been neglected, in 

which case the above potential would vanish. A little thought however shows the po- 

tf»ntial of the nearer mass to be slightly out of phase with that from the further 

mass due to the finite field propagation velocity c. The difference in phase of the 

two masses as seen at P is Just 2(x/c)cos(r,v). A previous relation (10) then gives 

to the first order! 

v^ - v(i) - 2(x/c)co8(r,v)a(l) (36) 

The total potential therefore does not vanish, and its gradient is approximately: 

a e 

VHlr %  -4Y2(hoa/c
2)cos2(r,v) (27) 

It follows immediately that: 

o 

dE/dt 5 ^A Lc • dA * f-4/%4Y(2m) V/c" (28) 

An equivalent line of reasoning gives similar results to the above for the case 

of circularly accelerating mass. Again, calculation of h. requires that the velocity 

of the circling mass be projected onto the radius vector to the far field point P. 

The angular dependence of the hn field becomes sind  sin(<i - wt) where w is the an- 
4»    ir 

gular velocity of rotation and 6  and ^ retain the same meaning as above. For the 

case of the rotating dumbbell, retardation conditions are accounted for in the phase 

difference in the sin(0 - wt) terra.  The total potential at P then becomes: 

•    H  = -4Y2(h0X'3/c
2)sln2Ö cos2^ - dJt) (29) 

The total power dissipated can then be gotten as above by computing the gradient of 

H  and from it L, then Integrating L over the appropriate enclosing area. This 

of course gives back exactly the result in equation (28). 

There is another point of even more interest in the expression for H  in this 

case of circularly accelerating mass. Namely if H. represents contributions from 

opposite mass elements of a rotating ring of mass, integration over all the mass in- 



% 16• 

volves the term POS2(^ - u)t)dn Integrated from 0 to n.    But this integral dqes not 

vanish, and therefore H, at a far field point although becoming time independent 

In this cane does not vanish. Neither does its gradient or the outward flowing 

gravitational field energy density L! Integration of L over the enclosed area con- 

taining the rotating mass ring then gives a steady flow of energy out of the system: 

dE/dt § r-8/lBh YM a/c (30) 

Here M is^the total mass of the ring. 

tquatlons (28) and (30) should be compared with (17) and (15) for the radiation 

reaction for a mass dumbbell and ring derived in Part II. The agreement is fairly 

close, but not exact numerically. The shortcoming may derive from not considering 

other components of h.. In the second^order computation involving the retardation 

conditions, or it may be Irremovable in the same way that the electromagnetic mass 

of the electron does not account for its entire mass. 

There is an interfstlng physical interpretation of what happens when m acceler- 

ates. In the Blrkhoff Theory acceleration of a source mass has been seen to modify e 

Its gravitational field. One can Imagine the field acquires a new energy density 

which propagates out from the mass at c. One might look on the induction field action 

also as propagating out at c in the static field case. However the net energy 

"flawing outM of such a?field by (20) goes as 1/r and thus rapidly drops to zero 

with increasing r, The net energy flow from the residual accelerated part of the field 

has ho r dependence. It therefore gives a net energy loss at distances far from the 

systewi 

This type of gravitational radiation cannot be thought o^ In terms of oscillating 

iiillltlpole fields.  It appears solely a result of the physical acceleration of an 

Interacting mass system. 

III.C Coherence. 
i 

Hli^n N masses make up each pole of a spinning dumbbell, (28) tells us the power 

„radiated Is N5 times the single m-m dlpole. This Is the case for radiation from N 

coherent sources,,7 lor most macroscopic.physically realistic systems, the wavelength 
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X « 2Ttc/u)      Is much greater than the physical dimensions. Ihe coherence Is a 
system 

result of residual radiation components emitted In phase with each other. 

Next, one might naturally ask what Is the gravitational radiation loss for a 

Nm-m dlpole spinning about Its center of mass. In this case m undergoes an acceler- 
® 

atlon a0 and Nm an acceleration aol/N about the center of mass.  (28) shows each 

pole radiates proportional to Its gravitational field energy and the square of Its 

cwn acceleration. The two masses taken with their respective accelerations are thus 

found to radiate equally. Due to coherence, the net power Is Just 4 times that 

expected from the single accelerating pole alone. 

So far the mutual gravitational field energy of m and Nm has not been taken Into 

account. Assuming the mutual field energy Is localized about m for reasons explained 

In Parts I and 11, the acceleratlonal Interaction for large N dissipates a power 

equal to N times that dissipated by the single accelerating pole alone. In general 

an ,,amplltude,, can be defined proportional to the square root of the gravitational 

field enefgy and to the absolute value of the total acceleration. Because of coher- 

ence the power Is the square of the total amplitude, but for latge N the cross terms 

and the separate contributions from m and Nm can be neglected with respect to the 

radiation term caused Uj^ the mutual gravitational energy, kquivalently, the single 

pole m can by thought of as interacting separately with each one of the N masses of 

the opposite pole, each pair contributing incoherently to a net power again approx- 

imately N times that from the single accelerating pole alone. «, 

An m-M gravitational system can therefore lose energy into its far field at a 

rate proportional to the mutual gravitational potential energy of the system. Such 

an-lnterpretatlon Is consistent with the estimates of radiation reaction found in 

Part 11. The radiation reaction dissipation (13) has therefore been correlated with 

the far field gravitational radiation in the framework of the Birkhoff Theory. As 

mentioned previously, as m approaches the size of M, I.e. m = M, the two interpre- 

tations definitely become equivalent, and the total power radiated goes as the mutual 

potential Interaction energy of the masses. 
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IV. TWO PICTUIlfcS OK ünAVIXATIONAL RADIATION LOSS 

IV.A Integration of the preceding views of radiation from accelerating masses. 

It may prove helpful to integrate the particular examples of tue preceding sec- 

tions into a general view of gravitational radiation in flat spacetime. The perfect 

fluid1 of UirkholT, though purely an auxiliary concept and not essential to the Blrk- 

hoff Theory, offers a formal connection between the gravitational and inertial forces 

and will be used nere to aid in linking the complementary pictures of direct inter- 

particle radiation reaction forces and the far gravitational radiation field intensity. 

The equation of state of the liirkhoff perfect fluid, whose Internal mass-energy 

and momentum is characterized by the tensor T J = TJ and gravitational field by 

11 2 
t •' (r,ct) at each point, is defined by p = p00c where the pressure and density are 

scalar world invariants. 

T •' describes solely the state of the "true" mass.  It therefore vanishes every- 

where outside the world tube of a mass particle m.  t ^ (r,ct) describes all comple- 

mentary gravitational field effects. With only gravitational forces acting, the 

divergence of the sum of T •• and t J (r,ct) must vanish to ensure equilibrium of 

forces« When the proper test-energy density as here is assumed a priori constant 

along the world line of m, th» total energy deijsity generally can fluctuate between 

kinetic and gravitational. In absence of gravitational fields, this provides the 

standard continuity relations for the perfect fluid, while in absence of "true" 

masses we obtain the conservative character of the static gravitational field and 
9 

continuity of any radiation fields which may occur (although equivalent mass in the 

field may also be a source of radiation). 

Integrating the divergence of T ^ + t  (r,ct) over space, and applying the theo- 

rcm of Uauss in 4 dimensions, i    [T ] dA = 0 since Tla = 0 outside tlip world tube and: 

jv Yot dV0 = -Jv YQt t^(r,ct)dV - ^ {ct^^ct) }AdAa (31) 

a = 2,3,4 

Hy direct  integration,   the  left  term is found to be the  time component of inertial 

Mllikowskl  4-force   (Yd/dt)Ynic   ,   the  time rate of change of energy  In the mass system. 
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IV,B* Radiation Reaction Picture. 

The time rate of cliange of total inertial energy can be seen to be equal to the 

tiitip pomponent of Hlrkhoff gravitational 4-force multiplied by c. The sum of the 

i   1 k 
last two terms of (31) is then by definition just mc B .. uJu . This represents the 

J * 

rate at which external gravitational forces acting on m do work. Because of the con- 

servatlve character of the gravitational induction field, this therefore expresses 

the residual gravitational radiation reaction when averaged over a full cycle or 

i   i k 
long time interval. Note that mc B ., u u depends only on relative parameters, i.e. 

mutual energy, relative velocity and acceleration, etc., all In a framework of flat 

spacetlme. Thus we have a direct interpartlcle calculation of radiation damping or 

friction as Opposed to the complementary picture which handles gravitational radiation 

solely on a basis of field Interactions. 

IV.C Direct Held Interaction Picture. 

^Besides calculating directly the self or external field reaction of each mass 

element dm and summing over all elements to obtain the total time rate of change of 

energy, a far field radiation intensity, whlcn should yield a compatible result, can 

be obtained by a complementary method. Let us say the energy of a gravitational ra- 

diation field at distance r from m propagates in the direction of r with fundamental 

velocity c. The energy crossing an area dA in time dt will be found at far distances 

in a volume c dA dt. Using Moshinski's field energy density,Lagranglan function, 

the total power dissipated over an enclosing surface will be: * 

dE/dt * |A Lc «dA = -^ {{c/SnYig^ldti^/dxSdh   /9xJ} • dA      (32) 

Tills result can be compared with the selection of the Lagranglan energy density for 

the electromagnetic field and with the corresponding form of the electromagnetic 

Poynting vector. , 
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Thf first term on the right in relation«(31) vanishes for our purposes because, 

a) the time average of the conservative induction field is independent of time, and 

b) the local energy density of the gravitational radiation field Itself can be 

assumed in the case of "steady" radiation processes to be constant on the time av- 

erage. The last ferpi describes the total flow of gravitational radiation energy 

through a bounding surface and will be taken to be independent of the distance r 

from the center of tne radiating mass system. Under these conditions, the quantity 

In brackets, {ct (r,ct)}, compares with the quantity In brackets in the previous 

relation (02), and both of these take the form of a gravitational Poyntlng-type- 

vector describing the radiation flow, a fanction in general of the distance r and 

the polar angles 6 and 0O - cot.     ' 

The dual aspect of our radiation picture is now apparent. In the case of the 

far field, the angular and 1/r dependence of the gravitational radiation inten- 

sity will enter through relation (32), whereas in the direct interparticle inter- 

action of mass m with self or external gravitational forces, no necessity appears 

for evoking the angular dependence of the emitted radiation. Resolution of this 

possibly significant difference in our radiation pictures would require more scru- 

tiny than applied here, and remains a problem of certain Interest* A point in fa- 

vor of these pictures of gravltatlonal*radlation is that both otherwise seem com- 

pletely consistent with the Dlrkhoff Theory, which indeed was originally Intended 

to describe completely all gravitational effects. One must only be aware that 

more refinements, such as the retardation conditions imposed by Graef,  are required 

in the treatment of effects of higher than 1/c2 order. 
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V. REACTION OF CENTRIFUGAL FORCES ON FREELY SPINNING MASSES.

V.A Interaction of a freely spinning mass with the universe.

Interaction of the gravitational field of an accelerating aass elenent m In a 

distribution of elements whose center of mass remains at rest with respect to a large 

remote external mass M can be calculated directly from equation (4). Noting tlie 

only non-vanlshlng component of v^ In this case Is v^ "1, and If F^ Is the relativ­

istic 3-vector force which m exerts on M at a distance U so great that 1/R* and 

higher order terms can be neglected, the last term of (4) becomes:

F_ ! 2y*[1 ♦ (v/c)®](YlfcaAl)a+/c*
g

(33)

Here v denotes the velocity of the element m relative to Its system's center of mass 

(and hence In this case to M).

It may be well before going on to Indicate the physical meaning of (33).
a

Previous arguments of Craef* suggest that In the Birkhoff Theory the limiting value 

of Y>An/n(as for example for the universe)Is imc*. Were this Indeed the case,

o Y*tl ♦ (v/c)*]ma+ (M)

i

ttiat Is, there Is a gravitational Interaction with the universe approximately equal 

to the Inertial (centrifugal) force on m. Indeed, this expresses Mach's contention 

that tlie so-called Inertial force Is actually of gravitational origin. The mutual 

gravitational field energy of m with respect to M again appears to be localized 

about m and to undergo the same acceleration.

Going on, we now ask what residual effects may occur In the Interaction of the 

mass elements of a freelj sjiinning mass with the universe. Because the acceleration 

of an element m must be referred to the center of spin, by equation (10) It must be 

treated as a retarded (quantity. This r*‘sults In Uie Taylor Series expansion analo-- 

gous to equation (11) wnlch gives a residual componetit of Interaction force In line 
wlUi t)ip vector velocity of ni. Neglecting all force reaction effects on the rest 

energy hk-* of m, whicli has been assumed constant along the world line, and using

* "Orbit Tlicory", Proc. bjmp. App. Matli. Vol.IX, p.l71, (1057)
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the results of equations (0), (11), and (ftt) , the kinetic energy of each mass element 

Is found to decrease at a rate: 

dK.L./dt = F -v = -4Y4 (K.E./cz)(r/c)7 -d'v/dt* (85) 
ft 

where r is the spin radius of m and K. L. its kinetic energy. Since the product 

of v and Its second time derivative is the same sign and a collnear product for an 

Isolated, freely spinning system, the losses from each mass element are apparently 

additive and contribute to a net energy decay from the entire system. The "freely" 

spinning mass therefore will slow down due to its Interaction with all masses in 
m 

the universe. 

This Is strictly a gravitational type interaction. Physically, the net power 

dissipation in this case appears to be non-oscillatory and indepenoent of direction. 

If the universe by definition cannot Itself spin, the entire angular momentum re- 

action force must set back on trie freely spinning mass system causing a real slowing 

down. 

V.B Self interaction of mass elements in a freely spinning system» «, 

» 
Equation (.14) suggests that centrifugal forces can be Interpreted in the Birk- 

hoff Theory in terms of direct gravitational Interaction with the universe. These 

forces according to postulate 0.5 propagate#at finite velocity c. One can therefore 

ask what residual effects arise in interaction of oppositely paired elements in a 

freelj spinning mass distribution. 

Consider üiagram 4. We ask whether the line of force between oppositely paired 

mass elements passes through the center of mass.  If it did, it could be assumed no 

tangential components of force were acting on either mass. However we shall show how 

acceleration enters the picture to preclude the trivial result. 

It takes a time 2a/c in the proper rest frame of the spinning system for a force 

disturbance from one mass element to propagate to the other. This has led or perhaps 

misled some authors"' 0 to assume the existence of 1/c order tangential forces within 

the system. However it is not hard to see that .in the proper frame the oppositely 

paired elements are at rest with respect to each other and no such components actu- 

ally arise. However the propagation of centrifugal forces is invariant only with 
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respect to velocity In a flat spacetlme, not to acceleration or its rates of change, 

as evidenced by the bending of light In a gravitational field. With respect to the 

propagating centrifugal forces which are not acceleration invariant,the opposite mass 

element in time 2a/c accelerates a distance in the tangential 6 direction of l/6a(2a/c) . 

The angular discrepancy which must appear in the centrifugal force is therefore 

4/3 (aa /c ) so that a 1/c order componeiit of that force does lie in the $ direction. 

When this component is dotted with the velocity and the relativistic factors taken 

Into account by transforming the process out of the proper frame of the spinning 

mass, the result for circular motion is Just 2/3 Of the result found in equation (30). 

This suggests the two treatments, V.A and V.B, are very nearly equivalent. 

Physically, in the rest frame of the spinning system the centrifugal forces would 

appear to diminish with time. This describes a new process which can be called the 

centrifugal damping of spin motion. 9 

Vor  the spinning point dipole of radius 'a', equation (35) gives: 

dE/dt = 2F • v = -4Y4mvJ(aa)/c) 3ü) (36) 

and the proportional decay of kinetic energy for low velocities is: 

d(K.E.)/dt =+ 2dhj/dt * _4 (aw/c) 3^ 

KTET       w 

It is particularly interesting that spontaneous loss of rotational kinetic energy, 

similar to the losses predicted from the gravitational systems in Parts II and III, 

does not appear to cancel when Integrated over a mass such as a rotating sphere or 

cylinder whose external multlpole moments do not vary with time. Since the "grav- 

itatlonal radiation" reaction In the case of the universal interaction is propor- 

tional directly to m, tne contributions of dach mass element to the total power 

dissipated are additive and equation i'M>)   can be generalized to: 

(dh/dtVner§l radiation reaction 
= -/„, ^Y* (Ve) VV dm      (38) 

« 

This expression sets a lower bound on the rate "freely" spinning mass systems slow down. 
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A lucid Interpretation attaches to the separate situations of purely gravita­

tional and centrifugal radiation damping. Physically, In (13) picture v/c casq>on- 

ents of a negative outward-flowing "g-fleld" fluid acting against the negative 

equivalent mass of the m-M field. In (35) picture v/c components of positive out­

ward-flowing "centrifugal field" fluid to act against toe positive equivalent mass 

of the kinetic energy. A little reflection will show both effects go In the same 

direction, causing a net rate of energy loss from the accelerating mass system In 

agreement with tlte minus signs wlilch appear in these formulae.

Gravitational or/and centrifugal damping of a freely spinning mass system’s 

motion therefore results In a positive outward flow of 1/c order gravitational 

radiation energy,accompanied by a genuine decrease In the total energy of tlie source 

system, l.e. a genuine decay of the motion. This Is In contradistinction to the 

net effect of 1/c* order gravitational quadrupole radiations predicted by Einstein 

and others,^ whereby a negative energy mysteriously appears to be radiated outward 

while the total Internal energy of the mass system Increases. (See, for example,

A. Peres, 11 Nuovo tim«*nto, XI, 1 March lUSO, p. 05J1) .

V.C Experimental magnitude of the predicted 1/cV order gravl^Uonal radlat^.

lor physically realistic, laboratory-sized, symmetrically rotating masses, 

acceptance of equation (38) leads to a proportional decay of angular frequency for 

freely spinning masses of magnitude:

- (-2y*u.Vc") r*dm/J„, r‘dm -k(a/c) *u. (39)

depends on the geometrical moments of tiie mass, being for a right cylinder 

rotatli«HiboUt its axis, 1 for a thin rod rotating about an axis through Its center 

normal to Its length. The minus sign Indicates tnat the spin frequency decreases.

With a view to experlimnital feasibility, for a steel cylinder spinning near 

tlie limits of tensile strength at velocity aw ^ 10 cm/sec, the frequency decay 

ratio depends on w*. Let a lo"* cm with w on the order of 10* radlans/sec. 

diii 'dt Is then found to be on the order of h radlans/sec/sec. The effect Is thus 

on the order of 5 parts In 10* on frequency.
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It. seems wit hin possibility slmuljUwouslj ^o generate and measure such quanti- 

ties using a type of magnetic suspension and rotation apparatus developed by Deams.19 

lly suspending the rotating mass in ultra-high vacuum and making use of suspension 

symmetry, virtualJy all stray frictions are impressively reduced. Moreover, magnetic 

and other residual drags appear to vary proportional to much lower powers of the 

frequency.20*1 

The angular frequency and Its rates of change are capable of being detected 

with great precision by comparison with a good frequency standard. The experimental 

techniques appear hard but straightforward.    On the other hand, tests for the 

grHvltatlonal quadrupole radiation of Einstein , even if reinterpreted in the sense 

of sections V.A and V.B, are of an (aw/c) lower magnitude and far beyond the range 

of present instrumentation. 
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M  P(xjy,z, t) 

Diagram 1. Linearly accelerating mass. 

Diagram 2 & 3. Circularly accel- 

erating mass (mass dumbell). 

Diagram 4a. Showing why v/c com- 

ponents of centrifugal force might 

be expected to retard the m-ni di- 

pole spin. 

/ 

do=0,= vt/a; v=0 

80 = ä)3(2a/c)3 

1 it3 . , 

Diagram 4b. Showing that in the proper 

frame of the m-m dipole, the situation por- 

trayed in 4a does not occur. However, 

while the centrifugal forces propagate at 

constant velocity, the mass system accel- 

erates, causing a smaller but finite angular 

discrepancj an(j tangential force components. 
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